5 research outputs found

    Stimulation of rhamnolipid biosurfactants production in Pseudomonas aeruginosa AK6U by organosulfur compounds provided as sulfur sources

    Get PDF
    AbstractA Pseudomonas aeruginosa AK6U strain produced rhamnolipid biosurfactants to variable extents when grown on MgSO4 or organosulfur compounds as sulfur sources and glucose as a carbon source. Organosulfur cultures produced much higher biosurfactants amounts compared to the MgSO4 cultures. The surface tension of the growth medium was reduced from 72mN/m to 54 and 30mN/m in cultures containing MgSO4 and 4,6-dimethyldibenzothiophene (4,6-DM-DBT), respectively. AK6U cultures produced different rhamnolipid congener profiles depending on the provided sulfur source. The dibenzothiophene (DBT) culture produced more diverse and a higher number of rhamnolipid congeners as compared to the DBT-sulfone and MgSO4 cultures. The number of mono-rhamnolipid congeners in the DBT culture was also higher than that detected in the DBT-sulfone and MgSO4 cultures. Di-rhamnolipids dominated the congener profiles in all the analyzed cultures. The sulfur source can have a profound impact on the quality and quantity of the produced biosurfactants

    Investigation of Biodegradation Speed and Biodegradability of Polyethylene and Manihot Esculenta Starch Blends

    No full text
    Over 350 million tons per year of conventional plastics is produced from petroleum currently and this amount is expected to rise exponentially in the near future. Proper disposal of these products has caused a great problem for the waste management industry and as a result, there is a significant negative impact on the environment. As a matter of fact, in order to reduce the environmental impact of plastics, some products obtained from agriculture (like starch) are used as polymer blend with synthetic plastics. This study shows that Manihot esculenta can be blended with polyethylene to form a partially degradable polymer. The processing conditions and sample formulations are shown to significantly affect the structure of the polymer which has a concomitant effect upon the degradation ratio as well as the degradation rate. Six samples in all were produced by varying composition of the blend between Low-density Polyethylene and Manihot esculenta using glycerol and water as plasticiser. These samples were buried in soil and the degradation ratios and rates were studied within a period of 28 days. Results showed that these produced biopolymers are environmentally compatible and bio-degradable. The rate of biodegradation in soil of these biopolymer samples varied largely. The polymer blend with 80% LDPE (20 CaS) by weight had the most regular weight loss over the period of the study. Under the conditions the study was carried out, polymer blend 20 CaS also had the steadiest rate of degradation. Hence 80% LDPE (wt.%) blended with Manihot esculenta starch is the optimal ratio with regard to the degradability of biopolymer in sandy-loam soil
    corecore